490 research outputs found

    Spatiotemporal chaotic dynamics of solitons with internal structure in the presence of finite-width inhomogeneities

    Full text link
    We present an analytical and numerical study of the Klein-Gordon kink-soliton dynamics in inhomogeneous media. In particular, we study an external field that is almost constant for the whole system but that changes its sign at the center of coordinates and a localized impurity with finite-width. The soliton solution of the Klein-Gordon-like equations is usually treated as a structureless point-like particle. A richer dynamics is unveiled when the extended character of the soliton is taken into account. We show that interesting spatiotemporal phenomena appear when the structure of the soliton interacts with finite-width inhomogeneities. We solve an inverse problem in order to have external perturbations which are generic and topologically equivalent to well-known bifurcation models and such that the stability problem can be solved exactly. We also show the different quasiperiodic and chaotic motions the soliton undergoes as a time-dependent force pumps energy into the traslational mode of the kink and relate these dynamics with the excitation of the shape modes of the soliton.Comment: 10 pages Revtex style article, 22 gziped postscript figures and 5 jpg figure

    Time discrimination of impulsive overlapping echos

    Get PDF
    This paper presents the processing of on acoustic echo built up by a sum of identical replicas of a given emitted signal; the sum terms have différent amplitude and phase . The method here presented consists in comparing, in a recurrent way, the envelope and the phase function of the echo with those of the emitted signal, and then getting the delays and amplitudes of the pulses that made up the echo.Traitement d'un écho acoustique lorsque celui-ci est la somme d'impulsions identiques au signal émis, mais avec une amplitude et un retard différent

    Cytochrome c Deficiency Differentially Affects the In Vivo Mitochondrial Electron Partitioning and Primary Metabolism Depending on the Photoperiod

    Get PDF
    Plant respiration provides metabolic flexibility under changing environmental conditions by modulating the activity of the nonphosphorylating alternative pathways from the mitochondrial electron transport chain, which bypass the main energy-producing components of the cytochrome oxidase pathway (COP). While adjustments in leaf primary metabolism induced by changes in day length are well studied, possible differences in the in vivo contribution of the COP and the alternative oxidase pathway (AOP) between different photoperiods remain unknown. In our study, in vivo electron partitioning between AOP and COP and expression analysis of respiratory components, photosynthesis, and the levels of primary metabolites were studied in leaves of wild-type (WT) plants and cytochrome c (CYTc) mutants, with reduced levels of COP components, under shortand long-day photoperiods. Our results clearly show that differences in AOP and COP in vivo activities between WT and cytc mutants depend on the photoperiod likely due to energy and stress signaling constraints. Parallel responses observed between in vivo respiratory activities, TCA cycle intermediates, amino acids, and stress signaling metabolites indicate the coordination of different pathways of primary metabolism to support growth adaptation under different photoperiods.info:eu-repo/semantics/publishedVersio

    Configuration Complexities of Hydrogenic Atoms

    Full text link
    The Fisher-Shannon and Cramer-Rao information measures, and the LMC-like or shape complexity (i.e., the disequilibrium times the Shannon entropic power) of hydrogenic stationary states are investigated in both position and momentum spaces. First, it is shown that not only the Fisher information and the variance (then, the Cramer-Rao measure) but also the disequilibrium associated to the quantum-mechanical probability density can be explicitly expressed in terms of the three quantum numbers (n, l, m) of the corresponding state. Second, the three composite measures mentioned above are analytically, numerically and physically discussed for both ground and excited states. It is observed, in particular, that these configuration complexities do not depend on the nuclear charge Z. Moreover, the Fisher-Shannon measure is shown to quadratically depend on the principal quantum number n. Finally, sharp upper bounds to the Fisher-Shannon measure and the shape complexity of a general hydrogenic orbital are given in terms of the quantum numbers.Comment: 22 pages, 7 figures, accepted i

    Effects of dietary eicosapentaenoic acid on growth, survival, pigmentation and fatty acid composition in Senegal sole (Solea senegalensis) larvae during the Artemia feeding period

    Get PDF
    We examined the effect of dietary eicosapentaenoic acid (20:5n-3, EPA) on growth, survival, pigmentation and fatty acid composition of Senegal sole larvae using a dose-response design. From 3 to 40 days post hatch (dph), larvae were fed live food that had been enriched using one of four experimental emulsions containing graduated concentrations of EPA and constant docosahexaenoic acid (22:6n-3, DHA) and arachidonic acid (20:4n-6, ARA). Proportions of EPA in the enriched Artemia nauplii were described as “nil” (EPA-N, 0.5% total fatty acids, TFA), “low” (EPA-L, 10.7% TFA), “medium” (EPA-M, 20.3% TFA) or “high” (EPA-H, 29.5% TFA). Significant differences among dietary treatments in larval length were observed at 25, 30 and 40 dph, and in dry weight at 30 and 40 dph, although no significant correlation could be found between dietary EPA content and growth. The stage of eye migration at 17 and 25 dph was significantly affected by dietary levels of EPA. Significantly lower survival was observed in fish fed EPA-H enriched nauplii. A significantly lower percentage of fish fed EPA-N (82.7%) and EPA-L (82.9%) diets were normally pigmented compared to the fish fed EPA-M (98.1%) and EPA-H (99.4%) enriched nauplii. Tissue fatty acid concentrations reflected the corresponding dietary composition. Arachidonic and docosahexaenoic acid levels in all the tissues examined were inversely related to dietary EPA. There was an increase in the proportion of docosapentaenoic acid (22:5n-3, DPA) in the tissues relative to the diet, which is indicative of chain elongation of EPA. This work concluded that Senegal sole larvae have a very low EPA requirement during the live feeding period

    SUMOylation of synaptic and synapse-associated proteins:An update

    Get PDF
    SUMOylation is a post‐translational modification that regulates protein signalling and complex formation by adjusting the conformation or protein–protein interactions of the substrate protein. There is a compelling and rapidly expanding body of evidence that, in addition to SUMOylation of nuclear proteins, SUMOylation of extranuclear proteins contributes to the control of neuronal development, neuronal stress responses and synaptic transmission and plasticity. In this brief review we provide an update of recent developments in the identification of synaptic and synapse‐associated SUMO target proteins and discuss the cell biological and functional implications of these discoveries. [Image: see text

    Rollover cyclometalation vs nitrogen coordination in Tetrapyridyl Anticancer Gold(III) complexes: effect on protein interaction and toxicity

    Get PDF
    In this work, a pair of gold(III) complexes derived from the analogous tetrapyridyl ligands H(2)biqbpy1 and H(2)biqbpy2 was prepared: the rollover, bis-cyclometalated [Au(biqbpy1)Cl ([1]Cl) and its isomer [Au(biqbpy2)Cl ([2]Cl). In [1](+), two pyridyl rings coordinate to the metal via a Au-C bond ((CNNC)-N-boolean AND-N-boolean AND-C-boolean AND coordination) and the two noncoordinated amine bridges of the ligand remain protonated, while in [2](+) all four pyridyl rings of the ligand coordinate to the metal via a Au-N bond ((NNNN)-N-boolean AND-N-boolean AND-N-boolean AND coordination), but both amine bridges are deprotonated. As a result, both complexes are monocationic, which allowed comparison of the sole effect of cyclometalation on the chemistry, protein interaction, and anticancer properties of the gold(III) compounds. Due to their identical monocationic charge and similar molecular shape, both complexes [1]Cl and [2]Cl displaced reference radioligand [H-3]dofetilide equally well from cell membranes expressing the K(v)11.1 (hERG) potassium channel, and more so than the tetrapyridyl ligands H(2)biqbpy1 and H(2)biqbpy2. By contrast, cyclometalation rendered [1]Cl coordinatively stable in the presence of biological thiols, while [2]Cl was reduced by a millimolar concentration of glutathione into metastable Au(I) species releasing the free ligand H(2)biqbpy2 and TrxR-inhibiting Au+ ions. The redox stability of [1]Cl dramatically decreased its thioredoxin reductase (TrxR) inhibition properties, compared to [2]Cl. On the other hand, unlike [2]Cl, [1]Cl aggregated into nanoparticles in FCS-containing medium, which resulted in much more efficient gold cellular uptake. [1]Cl had much more selective anticancer properties than [2]Cl and cisplatin, as it was almost 10 times more cytotoxic to human cancer cells (A549, A431, A375, and MCF7) than to noncancerous cells (MRC5). Mechanistic studies highlight the strikingly different mode of action of the two compounds: while for [1]Cl high gold cellular uptake, nuclear DNA damage, and interaction with hERG may contribute to cell killing, for [2]Cl extracellular reduction released TrxR-inhibiting Au+ ions that were taken up in minute amounts in the cytosol, and a toxic tetrapyridyl ligand also capable of binding to hERG. These results demonstrate that bis-cyclometalation is an appealing method to improve the redox stability of Au(III) compounds and to develop gold-based cytotoxic compounds that do not rely on TrxR inhibition to kill cancer cells.Medicinal ChemistryMetals in Catalysis, Biomimetics & Inorganic Material

    Photoperiod affects the phenotype of mitochondrial complex I mutants

    Get PDF
    Plant mutants for genes encoding subunits of mitochondrial Complex I (CI, NADH:ubiquinone oxidoreductase), the first enzyme of the respiratory chain, display various phenotypes depending on growth conditions. Here, we examined the impact of photoperiod, a major environmental factor controlling plant development, on two Arabidopsis thaliana CI mutants: a new insertion mutant interrupted in both ndufs8.1 and ndufs8.2 genes encoding the NDUFS8 subunit, and the previously characterized ndufs4 CI mutant. In long day (LD) condition, both ndufs8.1 and ndufs8.2 single mutants were indistinguishable from Col-0 at phenotypic and biochemical levels, whereas the ndufs8.1 ndufs8.2 double mutant was devoid of detectable holo-CI assembly/activity, showed higher AOX content/activity and displayed a growth-retardation phenotype similar to that of the ndufs4 mutant. Although growth was more affected in ndufs4 than ndufs8.1 ndufs8.2 under short day (SD) condition, both mutants displayed a similar impairment of growth acceleration after transfer to LD as compared to the WT. Untargeted and targeted metabolomics showed that overall metabolism was less responsive to the SD-to-LD transition in mutants than in the WT. The typical LD acclimation of carbon, nitrogen-assimilation and redox-related parameters was not observed in ndufs8.1 ndufs8. Similarly, NAD(H) content, that was higher in SD condition in both mutants than in Col-0, did not adjust under LD. We propose that altered redox homeostasis and NAD(H) content/redox state control the phenotype of Complex I mutants and photoperiod acclimation in Arabidopsis

    A mathematical and computational review of Hartree-Fock SCF methods in Quantum Chemistry

    Get PDF
    We present here a review of the fundamental topics of Hartree-Fock theory in Quantum Chemistry. From the molecular Hamiltonian, using and discussing the Born-Oppenheimer approximation, we arrive to the Hartree and Hartree-Fock equations for the electronic problem. Special emphasis is placed in the most relevant mathematical aspects of the theoretical derivation of the final equations, as well as in the results regarding the existence and uniqueness of their solutions. All Hartree-Fock versions with different spin restrictions are systematically extracted from the general case, thus providing a unifying framework. Then, the discretization of the one-electron orbitals space is reviewed and the Roothaan-Hall formalism introduced. This leads to a exposition of the basic underlying concepts related to the construction and selection of Gaussian basis sets, focusing in algorithmic efficiency issues. Finally, we close the review with a section in which the most relevant modern developments (specially those related to the design of linear-scaling methods) are commented and linked to the issues discussed. The whole work is intentionally introductory and rather self-contained, so that it may be useful for non experts that aim to use quantum chemical methods in interdisciplinary applications. Moreover, much material that is found scattered in the literature has been put together here to facilitate comprehension and to serve as a handy reference.Comment: 64 pages, 3 figures, tMPH2e.cls style file, doublesp, mathbbol and subeqn package
    corecore